Questões de Matemática - Enem

180 (Enem 2012 - Segundo Dia)

Em 20 de fevereiro de 2011 ocorreu a grande erupção do vulcão Bulusan nas Filipinas. A sua localização geográfica no globo terrestre é dada pelo GPS (sigla em inglês para Sistema de Posicionamento Global) com longitude de 124° 3’ 0” a leste do Meridiano de Greenwich.

Dado: 1° equivale a 60’ e 1’ equivale a 60”.

PAVARIN, G. Galileu, fev. 2012 (adaptado)

A representação angular da localização do vulcão com relação a sua longitude da forma decimal é

Tópicos desta questão: Matemática
179 (Enem 2012 - Segundo Dia)

Existem no mercado chuveiros elétricos de diferentes potências, que representam consumos e custos diversos.

A potência (P) de um chuveiro elétrico é dada pelo produto entre sua resistência elétrica (R) e o quadrado da corrente elétrica (i) que por ele circula. O consumo de energia elétrica (E), por sua vez, é diretamente proporcional à potência do aparelho.

Considerando as características apresentadas, qual dos gráficos a seguir representa a relação entre a energia cosumida (E) por um chuveiro elétrico e a corrente elétrica (i) que circula por ele?

Tópicos desta questão: Matemática
178 (Enem 2012 - Segundo Dia)

Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas disciplinas usando produto de matrizes. Todas as provas possuíam o mesmo peso, e a tabela que ele conseguiu é mostrada a seguir

Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por

Tópicos desta questão: Matemática
177 (Enem 2012 - Segundo Dia)

Dentre outros objetos de pesquisa, a Alometria estuda a relação entre medidas de diferentes partes do corpo humano. Por exemplo, segundo a Alometria, a área A da superfície corporal de uma pessoa relaciona-se com a sua massa m pela fórmula A = k . m2/3 , em que k é uma constante positiva.

Se no período que vai da infância até a maioridade de um indivíduo sua massa é multiplicada por 8, por quanto será multiplicada a área da superfície corporal?

Tópicos desta questão: Matemática
176 (Enem 2012 - Segundo Dia)

A cerâmica possui a propriedade da contração, que consiste na evaporação da água existente em um conjunto ou bloco cerâmico submetido a uma determinada temperatura elevada: em seu lugar aparecendo “espaços vazios” que tendem a se aproximar. No lugar antes ocupado pela água vão ficando lacunas e, consequetemente, o conjunto tende a retrair-se. Considere que no processo de cozimento a cerâmica de argila sofra uma contração, em dimensões lineares, de 20%.

Disponível em: www.arq.ufsc.br. Acesso em: 30 mar. 2012 (adaptado).

Levando em consideração o processo de cozimento e a contração sofrida, o volume V de uma travessa de argila, de forma cúbica de aresta a, diminui para um valor que é

Tópicos desta questão: Matemática
175 (Enem 2012 - Segundo Dia)

O gráfico apresenta o comportamento de emprego formal surgido, segundo o CAGED, no período de janeiro de 2010 a outubro de 2010.

Disponível em: www.mte.gov.br. Acesso em: 28 fev. 2012 (adaptado)Disponível em: www.mte.gov.br. Acesso em: 28 fev. 2012 (adaptado)

Com base no gráfico, o valor da parte inteira da mediana dos empregos formais surgidos no período é

Tópicos desta questão: Matemática
174 (Enem 2012 - Segundo Dia)

José, Paulo e Antônio estão jogando dados não viciados, nos quais, em cada uma das seis faces, há um número de 1 a 6. Cada um deles jogará dois dados simultaneamente. José acredita que, após jogar seus dados, os números das faces voltadas para cima lhe darão uma soma igual a 7. Já Paulo acredita que sua soma será igual a 4 e Antônio acredita que sua soma será igual a 8.

Com essa escolha, quem tem a maior probabilidade de acertar sua respectiva soma é

Tópicos desta questão: Matemática
173 (Enem 2012 - Segundo Dia)

O designer português Miguel Neiva criou um sistema de símbolos que permite que pessoas daltônicas identifiquem cores. O sistema consiste na utilização de símbolos que identificam as cores primárias (azul, amarelo e vermelho), Além disso, a justaposição de dois desses símbolos permite identificar cores secundárias (como o verde, que é o amarelo combinado com o azul). O preto e o branco são identificados por pequenos quadrados: o que simboliza o preto é cheio, enquanto o que simboliza o branco é vazio. Os símbolos que representam preto e branco também podem ser associados aos símbolos que identificam cores, significando se estas são claras ou escuras.

Folha de São Paulo. Disponível em: www1.folha.uol.com.br. Acesso em: 18 fev. 2012 (adaptado)

De acordo com o texto, quantas cores podem ser representadas pelo sistema proposto?

Tópicos desta questão: Matemática
172 (Enem 2012 - Segundo Dia)

Um produtor de café irrigado em Minas Gerais recebeu um relatório de consultoria estatística, constando, entre outras informações, o desvio padrão das produções de uma safra dos talhões de suas propriedades. Os talhões têm a mesma área de 30 000 m2 e o valor obtido para o desvio padrão foi de 90 kg/talhão. O produtor deve apresentar as informações sobre a produção e a variância dessas produções em sacas de 60 kg por hectare (10 000 m2).

A variância das produções dos talhões expressa em (sacas/hectare)2 é

Tópicos desta questão: Matemática
171 (Enem 2012 - Segundo Dia)

Um laboratório realiza exames em que é possível observar a taxa de glicose de uma pessoa. Os resultados são analisados de acordo com o quadro a seguir

Categoria Taxa
Hipoglicemia taxa de glicose menor ou igual a 70 mg/dL
Normal taxa de glicose maior que 70 mg/dL e menor ou igual a 100 mg/dL
Pré-diabetes taxa de glicose maior que 100 mg/dL e menor ou igual a 125 mg/dL
Diabetes Melito taxa de glicose maior que 125 mg/dL e menor ou igual a 250 mg/dL
Hiperglicemia taxa de glicose maior que 250 mg/dL

Um paciente fez um exame de glicose nesse laboratório e comprovou que estavam com hiperglicemia. Sua taxa de glicose era de 300 mg/dL. Seu médico prescreveu um tratamento em duas etapas. Na primeira etapa ele conseguiu reduzir sua taxa em 30% e na segunda etapa em 10%.

Ao calcular sua taxa de glicose após as duas reduções, o paciente verificou que estava na categoria de

Tópicos desta questão: Matemática
170 (Enem 2012 - Segundo Dia)

A tabela a seguir mostra a evolução da receita bruta anual nos três últimos anos de cinco microempresas (ME) que se encontram à venda.

Um investidor deseja comprar duas das empresas listadas na tabela. Para tal, ele calcula a média da receita bruta anual dos últimos três anos (de 2009 até 2011) e escolhe as duas empresas de maior média anual.

As empresas que este investidor escolhe comprar são

Tópicos desta questão: Matemática
169 (Enem 2012 - Segundo Dia)

Há, em virtude da demanda crescente de economia de água, equipamentos e utensílios como, por exemplo, as bacias sanitárias ecológicas, que utilizam 6 litros de água por descarga em vez dos 15 litros utilizados por bacias sanitárias não ecológicas, conforme dados da Associação Brasileira de Normas Técnicas (ABNT).

Qual será a economia diária de água obtida por meio da substituição de uma bacia sanitária não ecológica, que gasta cerca de 60 litros por dia com a descarga, por uma bacia sanitária ecológica?

Tópicos desta questão: Matemática
168 (Enem 2012 - Segundo Dia)

A Agência Espacial Norte Americana (NASA) informou que o asteroide YU 55 cruzou o espaço entre a Terra e a Lua no mês de novembro de 2011. A ilustração a seguir sugere que o asteroide percorreu sua trajetória no mesmo plano que contém a órbita descrita pela Lua em torno da Terra. Na figura, está indicada a proximidade do asteroide em relação à Terra, ou seja, a menor distância que ele passou da superfície terrestre.

Disponível em: http://noticias.terra.com.br (adaptado).

Com base nessas informações, a menor distância que o asteroide YU 55 passou da superfície da Terra é igual a

Tópicos desta questão: Matemática
167 (Enem 2012 - Segundo Dia)

Num projeto da parte elétrica de um edifício residencial a ser construído, consta que as tomadas deverão ser colocadas a 0,20 m acima do piso, enquanto os interruptores de luz deverão ser colocados a 1,47 m acima do piso. Um cadeirante, potencial comprador de um apartamento desse edifício, ao ver tais medidas, alerta para o fato de que elas não contemplarão suas necessidades. Os referenciais de alturas (em metros) para atividades que não exigem o uso de força são mostrados na figura seguinte.

Uma proposta substitutiva, relativa às alturas de tomadas e interruptores, respectivamente, que atenderá àquele potencial comprador é

Tópicos desta questão: Matemática
166 (Enem 2012 - Segundo Dia)

O globo da morte é uma atração muito usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas motos por dentro. A seguir, tem-se, na Figura 1, uma foto de um globo da morte e, na Figura 2, uma esfera que ilustra um globo da morte.

Na Figura 2, o ponto A está no plano do chão onde está colocado o globo da morte e o segmento AB passa pelo centro da esfera e é perpendicular ao plano do chão. Suponha que há um foco de luz direcionado para o chão colocado no ponto B e que um motoqueiro faça um trajeto dentro da esfera, percorrendo uma circunferência que passa pelos pontos A e B.

Disponível em: www.baixaki.com.br. Acesso em: 29 fev. 2012.

A imagem do trajeto feito pelo motoqueiro no plano do chão é melhor representada por

Tópicos desta questão: Matemática
165 (Enem 2012 - Segundo Dia)

Em exposições de artes plásticas, é usual que estátuas sejam expostas sobre plataformas giratórias. Uma medida de segurança é que a base da escultura esteja integramente apoiada sobre a plataforma. Para que se providencie o equipamento adequado, no caso de uma base quadrada que será fixada sobre uma plataforma circular, o auxiliar técnico do evento deve estimar a medida R do raio adequado para a plataforma em termos da medida L do lado da base da estátua.

Qual relação entre R e L o auxiliar técnico deverá apresentar de modo que a exigência de segurança seja cumprida?

Tópicos desta questão: Matemática
164 (Enem 2012 - Segundo Dia)

Em um blog de variedades, músicas, mantras e informações diversas, foram postados "Contos de Halloween". Após a leitura, os visitantes poderiam opinar, assinalando suas reações em "Divertido", "Assustador" ou "Chato". Ao final de uma semana, o blog registrou que 500 vistantes distintos acessaram esta postagem.

O gráfico a seguir apresenta o resultado da enquente.

O administrador do blog irá sortear um livro entre os vistantes que opinaram na postagem "Contos de Halloween".

Sabendo que nenhum visitante votou mais de uma vez, a probabilidade de uma pessoa escolhida ao acaso entre as que opinaram ter assinalado que o conto "Contos de Halloween" é "Chato" é mais aproximada por

Tópicos desta questão: Matemática
163 (Enem 2012 - Segundo Dia)

José, Carlos e Paulo devem transportar em suas bicicletas uma certa quantidade de laranjas. Decidiram dividir o trajeto a ser percorrido em duas partes, sendo que ao final da primeira parte eles redistribuiriam a quantidade de laranjas que cada um carregava dependendo do cansaço de cada um. Na primeira parte do trajeto José, Carlos e Paulo dividiram as laranjas na proproção 6 : 5 : 4, respectivamente. Na segunda parte do trajeto José, Carlos e Paulo dividiram as laranjas na proporção 4 : 4 : 2, respectivamente.

Sabendo-se que um deles levou 50 laranjas a mais no segundo trajeto, qual a quantidade de laranjas que José, Carlos e Paulo, nessa ordem, transportaram na segunda parte do trajeto?

Tópicos desta questão: Matemática
162 (Enem 2012 - Segundo Dia)

O losango representado na Figura 1 for formado pela união dos centros das quatros circunferências tangentes, de raios de mesma medida.

Dobrando-se o raio de duas das circunferências centradas em vértices opostos do losango e ainda mantendo-se a configuração das tangências, obtém-se uma situação conforme ilustrada pela Figura 2.

O perímetro do losango da Figura 2, quando compararado ao perímetro do losango da Figura 1, teve um aumento de

Tópicos desta questão: Matemática
161 (Enem 2012 - Segundo Dia)

O esporte de alta competição da atualidade produziu uma questão ainda sem resposta: Qual é o limite do corpo humano? O maratonista original, o grego da lenda, morreu de fadiga por ter corrido 42 quilômetros. O americano Dean Karnazes, cruzando sozinho as planícies da Califórnia, conseguiu correr dez vezes mais em 75 horas.

Um professor de Educação Física, ao discutir com a turma o texto sobre a capacidade do maratonista americano, desenhou na lousa uma pista reta de 60 centímetros, que representaria o percurso referido.

Disponível em: http://veja.abril.com.br.Acesso em 25 jun. 2011 (adaptado)

Se o percurso de Dean Karnazes fosse também em uma pista reta, qual seria a escala entre a pista feita pelo professor e a percorrida pelo atleta?

Tópicos desta questão: Matemática
160 (Enem 2012 - Segundo Dia)

Uma mãe recorreu à bula para verificar a dosagem de um remédio que precisava dar a seu filho. Na bula, recmendava-se a seguinte dosagem: 5 gotas para cada 2 kg de massa corporal a cada 8 horas.

Se a mãe ministrou corretamente 30 gotas do remédio a seu filho a cada 8 horas, então a massa corporal dele é de

Tópicos desta questão: Matemática
159 (Enem 2012 - Segundo Dia)

A figura a seguir apresenta dois gráficos com informações sobre as reclamações diárias recebidas e resolvidas pelo Setor de Atendimento ao Cliente (SAC) de uma empresa, em uma dada semana. O gráfico de linha tracejada informa o número de reclamações recebidas no dia, o de linha contínua é o número de reclamações resolvidas no dia. As reclamações podem ser resolvidas no mesmo dia ou demorarem mais de um dia para serem resolvidas.

O gerente de atendimento deseja identificar os dias da semana em que o nível de eficiência pode ser considerado muito bom, ou seja, os dias em que o número de reclamações resolvidas excede o número de reclamações recebidas.

Disponível em: http://bibliotecaunix.org. Acesso em: 21 jan. 2012 (adaptado).

O gerente de atendimento pôde concluir, baseado no conceito de eficiência utilizado na empresa e nas informações do gráfico, que o nível de eficiência foi muito bom na

Tópicos desta questão: Matemática
157 (Enem 2012 - Segundo Dia)

João decidiu contratar os serviços de uma empresa por tlefone através do SAC (Serviço de Atendimento ao Cosumidor). O atendente ditou para João o número de pro tocolo de atendimento da ligação e pediu que ele anotase. Entretanto, João não entendeu um dos algarismos ditados pelo atendente e anotou o número 1 3 _ 9 8 2 0 7, sendo que o espaço vazio é o do algarismo que João não entendeu.

De acordo com essas informações, a posição ocupada pelo algarismo que falta no número de protocolo é a de

Tópicos desta questão: Matemática
156 (Enem 2012 - Segundo Dia)

Nos shopping centers costumam existir parques com vários brinquedos e jogos. Os usuários colocam créditos em um cartão, que são descontados por cada período de tempo de uso dos jogos. Dependendo da pontuação da criança no jogo, ela recebe um certo número de tíquetes para trocar por produtos nas lojas dos parques.

Suponha que o período de uso de um brinquedo em certo shopping custa R$ 3,00 e que uma bicicleta custa 9 200 tíquetes.

Para uma criança que recebe 20 tíquetes por período de tempo que joga, o valor, em reais, gasto com créditos para obter a quantidade de tíquetes para trocar pela bicicleta é

Tópicos desta questão: Matemática
155 (Enem 2012 - Segundo Dia)

As curvas de oferta e de demanda de um pro duto represen tam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercilizar em função do preço do produto. Em alguns casos, essas curvas podem ser representadas por retas. Suponha que as quantidades de oferta e de demanda de um produto sejam, respectivamente, representadas pelas equações:

  • QO = – 20 + 4P
  • QD = 46 – 2P

em que QO é quantidade de oferta, QD é a quantidade de demanda e P é o preço do produto.

A partir dessas equações, de oferta e de demanda, os economistas encontram o preço de equilíbrio de mercado, ou seja, quando QO e QD se igualam.

Para a situação descrita, qual o valor do preço de equilíbrio?

Tópicos desta questão: Matemática
153 (Enem 2012 - Segundo Dia)

A resistência mecânica S do uma viga de madeira, em forma de um paralelepípedo retângulo, é diretamente proprocional à largura (b) e ao quadrado de sua altura (d) e inversamente proporcional ao quadrado da distância entre os suportes da viga, que coincide com o seu comprimento (x), conforme ilustra a figura. A constante de proporcionalidade k é chamada de resistência da viga.

A expressão que traduz a resistência S dessa viga de madeira é

Tópicos desta questão: Matemática
152 (Enem 2012 - Segundo Dia)

A capacidade mínima, em BTU/h, de um aparelho de ar-condicionado, para ambientes sem exposição ao sol, pode ser determinada da seguinte forma:

  • 600 BTU/h por m2, considerando-se até duas pessoas no ambiente;
  • para cada pessoa adicional nesse ambiente, acrescentar 600 BTU/h;
  • acrescentar mais 600 BTU/h para cada equipamento eletrônico em funcionamento no ambiente.

Será instalado um aparelho de ar-condicionado em uma sala sem exposição ao sol, de dimensões 4 m x 5 m, em que permaneçam quatro pessoas e possua um aparelho de televisão em funcionamento.

A capacidade mínima, em BTU/h, desse aparelho de ar-condicionado deve ser

Tópicos desta questão: Matemática
151 (Enem 2012 - Segundo Dia)

Um forro retangular de tecido traz em sua etiqueta a informação de que encolherá após a primeira lavagem mantendo, entretanto, seu formato. A figura a seguir mostra as medidas originais do forro e o tamanho do encolhimento (x) no comprimento e (y) na largura. A expressão algébrica que representa a área do forro após ser lavado é (5 – x) (3 – y).

Nessas condições, a área perdida do forro, após a primeira lavagem, será expressa por:

Tópicos desta questão: Matemática
150 (Enem 2012 - Segundo Dia)

Arthur deseja comprar um terreno de Cléber, que lhe oferece as seguintes possibilidades de pagamento:

  • Opção 1: Pagar à vista, por R$ 55 000,00;
  • Opção 2: Pagar a prazo, dando uma entrada de R$ 30 000,00, e mais uma prestação de R$ 26 000,00 para dali a 6 meses.
  • Opção 3: Pagar a prazo, dando uma entrada de R$ 20 000,00, mais uma prestação de R$ 20 000,00, para dali a 6 meses e outra de R$ 18 000,00 para dali a 12 meses da data da compra.
  • Opção 4: Pagar a prazo dando uma entrada de R$ 15 000,00 e o restante em 1 ano da data da compra, pagando R$ 39 000,00.
  • Opção 5: pagar a prazo, dali a um ano, o valor de R$ 60 000,00.

Arthur tem o dinheiro para pagar à vista, mas avalia se não seria melhor aplicar o dinheiro do valor à vista (ou até um valor menor), em um investimento, com rentbilidade de 10% ao semestre, resgatando os valores à medida que as prestações da opção escolhida fossem vecendo.

Após avaliar a situação do ponto financeiro e das codições apresentadas, Arthur concluiu que era mais vatajoso financeiramente escolher a opção

Tópicos desta questão: Matemática
149 (Enem 2012 - Segundo Dia)

Para decorar a fachada de um edifício, um arquiteto projetou a colocação de vitrais compostos de quadrados de lado medindo 1 m, conforme a figura a seguir.

Nesta figura, os pontos A, B, C e D são pontos médios dos lados do quadrado e os segmentos AP e QC medem 1/4 da medida do lado do quadrado. Para confeccionar um vitral, são usados dois tipos de materiais: um para a parte sombreada da figura, que custa R$ 30,00 o m2, e outro para a parte mais clara (regiões ABPDA e BCDQB), que custa R$ 50,00 o m2.

De acordo com esses dados, qual é o custo dos materiais usados na fabricação de um vitral?

Tópicos desta questão: Matemática
148 (Enem 2012 - Segundo Dia)

Jorge quer instalar aquecedores no seu salão de beleza para melhorar o conforto dos seus clientes no inverno. Ele estuda a compra de unidades de dois tipos de aquecedores: modelo A, que consome 600 g/h (gramas por hora) de gás propano e cobre 35 m2 de área, ou modelo B, que consome 750 g/h de gás propano e cobre 45 m2 de área.

O fabricante indica que o aquecedor deve ser instalado em um ambiente com área menor do que a da sua cobertura. Jorge vai instalar uma unidade por ambiente e quer gastar o mínimo possível com gás. A área do salão que deve ser climatizada encontra-se na planta seguinte (ambientes representados por três retângulos e um trapézio).

Avaliando-se todas as informações, serão necessários

Tópicos desta questão: Matemática
147 (Enem 2012 - Segundo Dia)

Alguns objetos, durante a sua fabricação, necessitam passar por um processo de resfriamento. Para que isso ocorra, uma fábrica utiliza um tanque de resfriamento, como mostrado na figura.

O que aconteceria com o nível da água se colocássemos no tanque um objeto cujo volume fosse de 2 400 cm3?

Tópicos desta questão: Matemática
146 (Enem 2012 - Segundo Dia)

Um maquinista de trem ganha R$ 100,00 por viagem e só pode viajar a cada 4 dias. Ele ganha somente se fizer a viagem e sabe que estará de férias de 1º a 10 de junho, quando não poderá viajar. Sua primeira viagem ocorreu no dia primeiro de janeiro. Considere que o ano tem 365 dias.

Se o maquinista quiser ganhar o máximo possível, quantas viagens precisará fazer?

Justificativa

Tanto a alternativa C quanto a D estão corretas, pois existe duas possíveis interpretações.

Tópicos desta questão: Matemática
145 (Enem 2012 - Segundo Dia)

Certo vendedor tem seu salário mensal calculado da sguinte maneira: ele ganha um valor fixo de R$ 750,00, mais uma comissão de R$ 3,00 para cada produto vendido. Caso ele venda mais de 100 produtos, sua comissão passa a ser de R$ 9,00 para cada produto vendido, a partir do 101º produto vendido.

Com essas informações, o gráfico que melhor representa a relação entre salário e o número de produtos vendidos é

Tópicos desta questão: Matemática
144 (Enem 2012 - Segundo Dia)

Uma pesquisa realizada por estudantes da Faculdade de Estatística mostra, em horas por dia, como os jovens entre 12 e 18 anos gastam seu tempo, tanto durante a semana (de segunda-feira a sexta-feira), como no fim de semana (sábado e domingo). A seguinte tabela ilustra os resultados da pesquisa.

De acordo com esta pesquisa, quantas horas de seu tempo gasta um jovem entre 12 e 18 anos, na semana inteira (de segunda-feira a domingo), nas atividades escolares?

Tópicos desta questão: Matemática
143 (Enem 2012 - Segundo Dia)

O gráfico mostra a variação da extensão média de gelo marítimo, em milhões de quilômetros quadrados, comparando dados dos anos 1995, 1998, 2000, 2005 e 2007. Os dados correspondem aos meses de junho a setembro. O Ártico começa a recobrar o gelo quando termina o verão, em meados de setembro. O gelo do mar atua como o sistema de resfriamento da Terra, refletindo quase toda a luz solar de volta ao espaço. Águas de oceanos escuros, por sua vez, absorvem a luz solar e reforçam o aqucimento do Ártico, ocasionando derretimento crescente do gelo.

Disponível em: http://sustentabilidade.allianz.com.br. Acesso em: fev. 2012 (adaptado).Disponível em: http://sustentabilidade.allianz.com.br. Acesso em: fev. 2012 (adaptado).

Com base no gráfico e nas informações do texto, é possível inferir que houve maior aquecimento global em

Tópicos desta questão: Matemática
142 (Enem 2012 - Segundo Dia)

Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas. Inicialmente são formadas sete colunas com as cartas. A primeira coluna tem uma carta, a segunda tem duas cartas, a terceira tem três cartas, a quarta tem quatro cartas, e assim sucessivamente até a sétima coluna, a qual tem sete cartas, e o que sobra forma o monte, que são as cartas não utilizadas nas colunas.

A quantidade de cartas que forma o monte é

Tópicos desta questão: Matemática
141 (Enem 2012 - Segundo Dia)

Maria quer inovar em sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas.

Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações?

Tópicos desta questão: Matemática
140 (Enem 2012 - Segundo Dia)

O dono de uma farmácia resolveu colocar à vista do público o gráfico mostrado a seguir, que apresenta a evolução do total de vendas (em Reais) de certo medicamento ao longo do ano de 2011.

De acordo com o gráfico, os meses em que ocorreram, respectivamente, a maior e a menor venda absolutas em 2011 foram

Tópicos desta questão: Matemática
139 (Enem 2012 - Segundo Dia)

Os hidrômetros são marcadores de consumo de água em residências e estabelecimentos comerciais. Existem vários modelos de mostradores de hidrômetros, sendo que alguns deles possuem uma combinação de um mostrador e dois relógios de ponteiro. O número formado pelos quatro primeiros algarismos do mostrador fornece o consumo em m3, e os dois últimos algarismos representam, respectivamente, as centenas e dezenas de litros de água consumidos. Um dos relógios de ponteiros indica a quantidade em litros, e o outro em décimos de litros, conforme ilustrados na figura a seguir.

Disponível em: www.aguasdearacoiaba.com.br (adaptado).Disponível em: www.aguasdearacoiaba.com.br (adaptado).

Considerando as informações indicadas na figura, o consumo total de água registrado nesse hidrômetro, em litros, é igual a

Tópicos desta questão: Matemática
138 (Enem 2012 - Segundo Dia)

Em um jogo há duas urnas com 10 bolas de mesmo tamanho em cada urna. A tabela a seguir indica as quantidades de bolas de cada cor em cada urna.

Uma jogada consiste em:

  1. o jogador apresenta um palpite sobre a cor da bola que será retirada por ele da urna 2;

  2. ele retira, aleatoriamente, uma bola da urna 1 e a coloca na urna 2, misturando-a com as que lá estão;

  3. em seguida ele retira, também aleatoriamente, uma bola da urna 2;

  4. se a cor da última bola retirada for a mesma do palpite inicial, ele ganha o jogo.

Qual cor deve ser escolhida pelo jogador para que ele tenha a maior probabilidade de ganhar?

Tópicos desta questão: Matemática
137 (Enem 2012 - Segundo Dia)

Um biólogo mediu a altura de cinco árvores distintas e representou-as em uma mesma malha quadriculada, utilizando escalas diferentes, conforme indicações na figura a seguir.

Qual é a árvore que apresenta a maior altura real?

Tópicos desta questão: Matemática
136 (Enem 2012 - Segundo Dia)

O diretor de uma escola convidou os 280 alunos de terceiro ano a participarem de uma brincadeira. Suponha que existem 5 objetos e 6 personagens numa casa de 9 cômodos; um dos personagens esconde um dos objetos em um dos cômodos da casa. O objetivo da brincandeira é adivinhar qual objeto foi escondido por qual personagem e em qual cômodo da casa o objeto foi escondido.

Todos os alunos decidiram participar. A cada vez um aluno é sorteado e dá a sua resposta. As respostas devem ser sempre distintas das anteriores, e um mesmo aluno não pode ser sorteado mais de uma vez. Se a resposta do aluno estiver correta, ele é declarado vencedor e a brincadeira é encerrada.

O diretor sabe que algum aluno acertará a resposta porque há

Tópicos desta questão: Matemática